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Abstract – This paper investigates the use of wavelet 
transform for denoising speech signals contaminated with 
common noises. Shown are the basic principles of wavelet 
transform as an alternative to the Fourier transform. The 
practical results obtained are based on processing a large 
dedicated database of reference speech signals contaminated 
with various noises in several SNRs. This research tends to be 
an extension to the practical research for speech signal 
enhancement for the purposes of hearing-aid devices. 
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I. INTRODUCTION 

Here is presented an investigation of the use of wavelet 
theory for practical signal denoising. Studied are the 
potentials of wavelet transform for improving the hearing 
perception of humans to noise contaminated speech 
records. This study is a continuation of the research for 
speech enhancement for the needs of small portable devices 
and particularly hearing-aid devices [1]. 

Fourier transform based spectral analysis is the dominant 
analytical tool for frequency domain analysis. However, 
Fourier transform cannot provide any information of the 
spectrum changes with respect to time. Fourier transform 
assumes the signal is stationary, but speech signal is always 
non-stationary. To overcome this deficiency, a modified 
method-short time Fourier transform allows to represent the 
signal in both time and frequency domain through time 
windowing function. The window length determines a 
constant time and frequency resolution. Thus, a shorter time 
windowing is used in order to capture the transient behavior 
of a signal; we sacrifice the frequency resolution. The 
nature of the real speech signals is nonperiodic and 
transient; such signals cannot easily be analyzed by 
conventional transforms. So, an alternative mathematical 
tool – wavelet transform must be selected to extract the 
relevant time-amplitude information from a signal. In the 
meantime, we can improve the signal to noise ratio based 
on prior knowledge of the signal characteristics. 

A. Wavelet Denoising 

Wavelet denoising is considered a non-parametric 
method. Thus, it is distinct from parametric methods in 
which parameters must be estimated for a particular model 
that must be assumed a priori. 

Assume that the observed data 
( ) ( ) ( )tNtStX +=  (1) 

contains the true signal S(t) with additive noise N(t) as 
functions in time t to be sampled. Let W(·) and W−1(·) 
denote the forward and inverse wavelet transform 
operators. Let D(·,λ) denote the denoising operator with soft 

threshold λ. We intend to wavelet denoise X(t) in order to 
recover Ŝ(t) as an estimate of S(t). Then the three steps 

( )XWY =  (2) 
( )λ,YDZ =  (3) 

( )ZWS 1ˆ −=  (4) 
summarize the procedure. Of course, this summary of 
principles does not reveal the details of implementing the 
operators W or D, or selection of the threshold λ. 

B. Wavelet Transform 

In this work, we stated only some keys equations and 
concepts of wavelet transform, more rigorous mathematical 
treatment of this subject can be found in [2, 3, 4, 5]. A 
continuous-time wavelet transform of f(t) is defined as: 
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Here a, b ∈ R, a ≠ 0 and they are dilating and translating 
coefficients, respectively. This multiplication of |a|-1/2 is for 
energy normalization purposes so that the transformed 
signal will have the same energy at every scale. The 
analysis function Ψ(t), the so-called mother wavelet, has to 
satisfy that it has a zero net area, which suggest that the 
transformation kernel of the wavelet transform is a 
compactly support function (localized in time). 

One drawback of the CWT is that the representation of 
the signal is often redundant, since a and b are continuous 
over R (the real number). The original signal can be 
completely reconstructed by a sample version of Wf (b,a). 
Typically, we sample Wf (b,a) in dyadic grid, i.e., a = 2-m 

and b = n2-m, m,n ∈ Z+. Substituting the last one into (5): 

( ) ( ) ( )∫
∞

∞−

∗

Ψ = dtttfbafDWT ψ,  (6) 

where Ψm,n(t) = 2-mΨ(2mt-n) is the dilated and translated 
version of the mother wavelet Ψ(t). 

Due to the orthonormal properties, there is no 
information redundancy in the discrete wavelet transform. 
In addition, with this choice of a and b, there exists the 
multiresolution analysis (MRA) algorithm, which 
decompose a signal into scales with different time and 
frequency resolution. 

The differences between different mother wavelet 
functions (e.g. Haar, Daubechies, Coiflets, Symlet, 
Biorthogonal and etc.) consist in how these scaling signals 
and the wavelets are defined. The choice of wavelet 
determines the final waveform shape; likewise, for Fourier 
transform, the decomposed waveforms are always sinusoid. 

The wavelet decomposition results in levels of 
approximated and detailed coefficients. The algorithm of 
wavelet signal decomposition and reconstruction of the 
signal from the wavelet transform is illustrated in numerous 
sources [2, 3, 4]. 
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C. Thresholding 

How is the threshold λ determined? Let's say that the data 
has sample size n if it has been sampled at n points ti such 
that Xi ≡ X(ti). Then for an orthogonal W, there will also be 
n transform coefficients Yj. If we prefer to use a threshold 
(such as the minimax threshold or the universal threshold) 
that depends only on n, then λ can be predetermined and we 
can use the three-step denoising procedure already 
described. However, if we prefer to use a data-adaptive 
threshold 

( )Ud=λ  (7) 
(such as the threshold selected by Stein's Unbiased Risk 
Estimator (SURE)) that depends not just on n but on U 
(which again represents the data in any generic domain), 
then we must use a four-step procedure: (2), (7), (3), (4). 

There are four common rules for selecting the threshold λ 
in practice: heursure, minimax, rigsure and sqtwolog. 
Minimax and SURE threshold selection rules are more 
conservative and would be more convenient when small 
details of the signal lie near the noise range. The two other 
rules remove the noise more efficiently. 

On the other side, thresholding can be done in different 
ways. Most popular techniques are hard thresholding and 
soft thresholding (Fig. 1). Hard thresholding is the simplest 
method but soft one has nice mathematical properties. 
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Fig. 1. – hard and soft thresholding 

Hard thresholding can be described as the usual process 
of setting to zero the elements whose absolute values are 
lower than the threshold. The hard threshold signal is x if x 
> λ, and is 0 if x <= λ. 

Soft thresholding is an extension of hard thresholding, 
first setting to zero the elements whose absolute values are 
lower than the threshold, and then shrinking the nonzero 
coefficients towards 0. The soft threshold signal is 
sign(x)(x – λ) if x > λ and is 0 if x <= λ. 

II. EXPERIMENTS 
A wavelet transform must be specified by its analysis and 

synthesis wavelet filter banks, single-level convolutions and 
boundary treatment, and the total number L of iterated 
multiresolution levels. Thus, we can generate many 
different kinds of wavelet shrinkage denoising procedures 
by combining different choices for W(·) and d(·). If we let D 
denote more generally either the soft thresholding operator 
Ds or the hard Dh, then by combining choices for W(·), 
D(·,·), and d(·), we can generate even more different kinds 
of wavelet-based denoising. 

A. Signal Database 

The test database contains 720 sentences from the IEEE 
corpus [6, 7, 8] produced by a male speaker. The sentences 
(*.wav files) were sampled at 25 kHz. 

A subpart of 30 records has a narrowband duplicate 
sampled at 8 kHz. They are contaminated with different 
types of noise from a couple of common noisy 
environments, (listed in Table 1). The noise is added to the 
speech signal in four particular SRNs: (15 dB, 10 dB, 5 dB, 
0 dB). The so produced pairs of reference and noisy signals 
are used for evaluating wavelet transform denoising. 

TABLE 1. COMMON NOISY ENVIRONMENTS 

Environment Noise Specifics 
Airport music, babble, aircraft engine 
Babble people speaking in the background 

Car car engine roar 
Exhibition music, babble, camera clicks 
Restaurant several levels of background speech, 

Station megaphone speech, footsteps 
Street engine roar, beeps, horns 
Train rail track noise 

B. Work Environment 

For the purpose of this research of the potentials of 
wavelet transform in denoising speech signals are carried 
several experiments. The speech signals from the database 
are being processed by denoising algorithms and the 
obtained denoised records are stored and measured. The 
processing algorithm and the ones used to give objective 
estimate of the obtained quality are done in Matlab. As a 
supplemental tool in the development of the script codes is 
used Wavelet Toolbox from Matlab IDE (Fig. 2). 
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Fig. 2. – Wavelet Toolbox (Matlab) 

C. Metrics 

The theoretical claims of optimality and generality 
pertain to a wide range of local and global measures of 
error, such as SNR measured in decibels. In fact, varying 
results can be obtained with different experimental 
conditions (signal classes, noise levels, sample sizes, 
wavelet transform parameters) and error measures as well 
as the SNR (measured in standard deviations and in 
decibels). Which measure of error is most relevant? What 
about other “figures of merit”? 

In our evaluation of the wavelet denoising performance, 
two metrics were used [9, 10]. The first is Signal-to-Noise 
Ratio (SNR), which gives the proportion of the wanted and 
unwanted signals. For classification of the frame as “signal” 
or “noise”, the reference channel was used. The SNR is the 
proportion of the averaged energy during the “signal” and 
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“noise” frames. This metric gives an indirect estimate of the 
sound quality. 

Mean Opinion Score (MOS) – ITU-T P.800 was used as 
a primary metric for the quality of the output signal after 
processing. This is a dimensionless quantity with values 
ranging from 1 to 5. It gives an estimate of human 
perception of sound quality. Estimating MOS with real 
humans is long and expensive procedure, involving many 
humans listening to the records and giving their subjective 
opinion. For this reason, MOS is not suitable for use during 
the stage of algorithm development. We used objective 
Perceptual Evaluation of Sound Quality (PESQ) – ITU-T 
P.862. It produces similar results to MOS results in the 
same scale (1 to 5) to give an estimate of human perception 
of sound quality too. We used the Matlab implementation 
of PESQ algorithm [6] which requires reference channel. 

III. RESULTS 
A. Threshold Type 

One of the completed experiments makes a comparison 
between the types of thresholding: hard, soft. Since Qian 
thresholding [11] produces results somewhat in between 
these ones, it is out of scope of this particular experiment. 
Fig. 3 and Fig. 4 show the average results in both metrics 
(SNR and MOS) from wavelet denoising using soft and 
hard thresholding, obtained with four different methods of 
threshold estimation (heursure, rigsure (local thresholds λl 
estimated adaptively for each level l) , minimax (global 
threshold), sqtwog ( global λ = sqrt(2 log n) ) ). 
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Fig. 3. – Threshold Types (SNR) 

Processing the contaminated speech signals with 
minimax and sqtwog criterion for threshold estimation does 
not improve the perception quality of the signals. Both 
results in SNR and MSE metrics show degradation in the 
signal being processed by wavelet transform. 
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Fig. 4. – Threshold Types (MOS) 

Signal quality improves by wavelet denoising when the 
threshold values are estimated according heursure and 
rigsure criteria. Since these two ones are quite similar 
algorithm, so are the results. Quite significant improvement 
is achieved using soft thresholding than using hard 
thresholding, which is quite unexpected and can partially be 
explained by the statistical parameters of noise and speech 
signals in the record. 

B. Level of Decomposition 

An experiment is done to evaluate the performance of 
wavelet transform (forward and reverse) with different 
levels of decomposition. The results in both metrics are 
shown on Fig. 5 and Fig. 6. The horizontal axis denotes the 
levels of decomposition and the vertical – SNR and MOS 
respectively. Given are several graphics corresponding to 
two different scaling algorithms (mln, sln) used for scaling 
the signal before thresholding (hard or soft) in wavelet 
transform. “Base” denotes the results for the initial 
contaminated speech signal (no processing). 

SNR
[dB]

Level 
Fig. 5. – Levels of Decomposition (SNR) 

Increasing the levels of decomposition increases the 
computational complexity of the wavelet denoising 
algorithm. The graphics show that this does not give 
sensible improvement in signal quality. For practical 
reasons it is pointless to evaluate large levels of wavelet 
decomposition so the levels of decomposition should be 
limited to no more than 5. 
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Fig. 6. – Levels of Decomposition (MOS) 

The graphical results obtained from sln scaling algorithm 
are smoother than the ones from the mln algorithm. The 
results from the second one (mln) tend to achieve better 
scores in SNR and MOS metrics. However, these two 
metrics are just an objective measure of the subjective 
human perception for sound quality. The human estimate of 
the results of both algorithms shows that sln denoised signal 
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sounds quite a bit better. There are some noise artifacts 
which are better audible in the mln signals. 

As a result from this experiment is proved that mln and 
sln algorithm for scaling achieve very similar results with a 
slight human preference to sln. 

C. Initial SNR 

Another experiment is done to track the behavior of the 
investigated wavelet denoising procedure when processing 
speech signals contaminated more or less with noise. 
Processed are similar records contaminated with noise in 
different initial SNRs .The results of the wavelet denoising 
are shown on Fig. 7 and Fig. 8. The horizontal axis denotes 
the initial SNRs and the vertical – SNR and MOS results 
from denoising respectively. Given are several graphics 
corresponding to several common wavelet function used in 
practice (haar, db3, db5, …). “Base” denotes the results for 
the initial contaminated speech signal (no processing). 
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Fig. 7. –Different Levels of Contaminated Speech (SNR) 

The graphical results in both metrics SNR and MOS 
from denoising with different wavelet functions prove to be 
quite similar. Seen is the improvement in comparison with 
the base result. 
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Fig. 8. – Different Levels of Contaminated Speech (MOS) 

Since the different results from the wavelet functions 
used can barely be distinguished, for practical reasons it is 
wise to use wavelet transform with function having low 
computational complexity. The practical experiments gave 
the execution time of the experimented combinations of 
wavelet parameters. Due to its computational complexity, 
wavelet function sym3, sym4, … proved to be practically 
inapplicable for real time denoising. The rest of the 
functions have good execution times (eg. db3, db5). For 
best results in practical speech signal denoising, one should 
select the parameters of the wavelet transform according to 
the previous experiments presented too. 

IV. COMMENT 
With regard to wavelet denoising, the theoretical 

justifications and arguments in its favor remain highly 
compelling. The procedure does not require any 
assumptions about the nature of the signal, permits 
discontinuities and spatial variation in the signal, and 
exploits the spatially adaptive multiresolution features 
essential to the wavelet transform. Furthermore, the 
procedure exploits the fact that the wavelet transform maps 
white noise in the signal domain to white noise in the 
transform domain. Thus, while signal energy becomes more 
concentrated into fewer coefficients in the transform 
domain, noise energy does not. It is this important principle 
that enables the separation of signal from noise. 

V. CONCLUSION 
It is unlikely that one particular wavelet shrinkage 

denoising procedure will be suitable, no less optimal, for all 
practical problems. However, it is likely that there will be 
many practical problems, for which after appropriate 
experimentation, wavelet-based denoising with either hard 
or soft thresholding proves to be the most e effective 
procedure. Estimation of the power spectrum by wavelet-
based denoising of the log-periodogram may prove to be 
one such important application with great promise for 
further development in speech signal enhancement. 
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